MakeItFrom.com
Menu (ESC)

C19400 Copper vs. S39274 Stainless Steel

C19400 copper belongs to the copper alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.3 to 37
17
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
81
Shear Strength, MPa 210 to 300
560
Tensile Strength: Ultimate (UTS), MPa 310 to 630
900
Tensile Strength: Yield (Proof), MPa 98 to 520
620

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1480
Melting Onset (Solidus), °C 1080
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
24
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
4.3
Embodied Energy, MJ/kg 40
60
Embodied Water, L/kg 300
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
140
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
940
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 20
32
Strength to Weight: Bending, points 11 to 18
26
Thermal Diffusivity, mm2/s 75
4.2
Thermal Shock Resistance, points 11 to 22
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 96.8 to 97.8
0.2 to 0.8
Iron (Fe), % 2.1 to 2.6
57 to 65.6
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0.015 to 0.15
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0