MakeItFrom.com
Menu (ESC)

C19500 Copper vs. SAE-AISI 4340M Steel

C19500 copper belongs to the copper alloys classification, while SAE-AISI 4340M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is SAE-AISI 4340M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
6.0
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 260 to 360
1360
Tensile Strength: Ultimate (UTS), MPa 380 to 640
2340
Tensile Strength: Yield (Proof), MPa 120 to 600
1240

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1090
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
38
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 42
26
Embodied Water, L/kg 310
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
4120
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
84
Strength to Weight: Bending, points 13 to 18
51
Thermal Diffusivity, mm2/s 58
10
Thermal Shock Resistance, points 13 to 23
70

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 1.0
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
93.3 to 94.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.65 to 0.9
Molybdenum (Mo), % 0
0.35 to 0.45
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0.010 to 0.35
0 to 0.012
Silicon (Si), % 0
1.5 to 1.8
Sulfur (S), % 0
0 to 0.012
Tin (Sn), % 0.1 to 1.0
0
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0