MakeItFrom.com
Menu (ESC)

C19500 Copper vs. S45500 Stainless Steel

C19500 copper belongs to the copper alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
3.4 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Shear Strength, MPa 260 to 360
790 to 1090
Tensile Strength: Ultimate (UTS), MPa 380 to 640
1370 to 1850
Tensile Strength: Yield (Proof), MPa 120 to 600
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1090
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 17
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
17
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 42
57
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
45 to 190
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
48 to 65
Strength to Weight: Bending, points 13 to 18
35 to 42
Thermal Shock Resistance, points 13 to 23
48 to 64

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
1.5 to 2.5
Iron (Fe), % 1.0 to 2.0
71.5 to 79.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0.010 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Tin (Sn), % 0.1 to 1.0
0
Titanium (Ti), % 0
0.8 to 1.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0