MakeItFrom.com
Menu (ESC)

C19700 Copper vs. CC498K Bronze

Both C19700 copper and CC498K bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.4 to 13
14
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 400 to 530
260
Tensile Strength: Yield (Proof), MPa 330 to 520
130

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
1000
Melting Onset (Solidus), °C 1040
920
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 250
73
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
10
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
10

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
52
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
30
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
72
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12 to 16
8.1
Strength to Weight: Bending, points 14 to 16
10
Thermal Diffusivity, mm2/s 73
22
Thermal Shock Resistance, points 14 to 19
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
85 to 90
Iron (Fe), % 0.3 to 1.2
0 to 0.25
Lead (Pb), % 0 to 0.050
1.0 to 2.0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.050
0 to 1.0
Phosphorus (P), % 0.1 to 0.4
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0 to 0.2
5.5 to 6.5
Zinc (Zn), % 0 to 0.2
3.0 to 5.0
Residuals, % 0 to 0.2
0