MakeItFrom.com
Menu (ESC)

C19700 Copper vs. C70700 Copper-nickel

Both C19700 copper and C70700 copper-nickel are copper alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.4 to 13
39
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
46
Shear Strength, MPa 240 to 300
220
Tensile Strength: Ultimate (UTS), MPa 400 to 530
320
Tensile Strength: Yield (Proof), MPa 330 to 520
110

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1090
1120
Melting Onset (Solidus), °C 1040
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 250
59
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
11
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
34
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
52
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
100
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
51
Stiffness to Weight: Axial, points 7.2
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 12 to 16
10
Strength to Weight: Bending, points 14 to 16
12
Thermal Diffusivity, mm2/s 73
17
Thermal Shock Resistance, points 14 to 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
88.5 to 90.5
Iron (Fe), % 0.3 to 1.2
0 to 0.050
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Nickel (Ni), % 0 to 0.050
9.5 to 10.5
Phosphorus (P), % 0.1 to 0.4
0
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0 to 0.5