MakeItFrom.com
Menu (ESC)

C19700 Copper vs. N10276 Nickel

C19700 copper belongs to the copper alloys classification, while N10276 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 2.4 to 13
47
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
84
Shear Strength, MPa 240 to 300
550
Tensile Strength: Ultimate (UTS), MPa 400 to 530
780
Tensile Strength: Yield (Proof), MPa 330 to 520
320

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1090
1370
Melting Onset (Solidus), °C 1040
1320
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 250
9.1
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
70
Density, g/cm3 8.9
9.1
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 41
170
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
300
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
230
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 12 to 16
24
Strength to Weight: Bending, points 14 to 16
21
Thermal Diffusivity, mm2/s 73
2.4
Thermal Shock Resistance, points 14 to 19
23

Alloy Composition

Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
14.5 to 16.5
Cobalt (Co), % 0 to 0.050
0 to 2.5
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
4.0 to 7.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.050
51 to 63.5
Phosphorus (P), % 0.1 to 0.4
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0