MakeItFrom.com
Menu (ESC)

C19700 Copper vs. R30035 Cobalt

C19700 copper belongs to the copper alloys classification, while R30035 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is R30035 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220 to 230
Elongation at Break, % 2.4 to 13
9.0 to 46
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
84 to 89
Tensile Strength: Ultimate (UTS), MPa 400 to 530
900 to 1900
Tensile Strength: Yield (Proof), MPa 330 to 520
300 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1040
1320
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 250
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
100
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 310
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
160 to 320
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
210 to 5920
Stiffness to Weight: Axial, points 7.2
14 to 15
Stiffness to Weight: Bending, points 18
23 to 24
Strength to Weight: Axial, points 12 to 16
29 to 61
Strength to Weight: Bending, points 14 to 16
24 to 39
Thermal Diffusivity, mm2/s 73
3.0
Thermal Shock Resistance, points 14 to 19
23 to 46

Alloy Composition

Boron (B), % 0
0 to 0.015
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0 to 0.050
29.1 to 39
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
0 to 1.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 0.15
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0 to 0.050
33 to 37
Phosphorus (P), % 0.1 to 0.4
0 to 0.015
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0