MakeItFrom.com
Menu (ESC)

C19800 Copper vs. ACI-ASTM CK35MN Steel

C19800 copper belongs to the copper alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 9.0 to 12
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Tensile Strength: Ultimate (UTS), MPa 430 to 550
650
Tensile Strength: Yield (Proof), MPa 420 to 550
310

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
31
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.8
5.9
Embodied Energy, MJ/kg 43
81
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
210
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
22
Strength to Weight: Bending, points 14 to 17
21
Thermal Diffusivity, mm2/s 75
3.3
Thermal Shock Resistance, points 15 to 20
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 95.7 to 99.47
0 to 0.4
Iron (Fe), % 0.020 to 0.5
43.4 to 51.8
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0.010 to 0.1
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0