MakeItFrom.com
Menu (ESC)

C19800 Copper vs. AISI 317LMN Stainless Steel

C19800 copper belongs to the copper alloys classification, while AISI 317LMN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is AISI 317LMN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 12
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Shear Strength, MPa 260 to 330
430
Tensile Strength: Ultimate (UTS), MPa 430 to 550
620
Tensile Strength: Yield (Proof), MPa 420 to 550
270

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1020
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
24
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.8
4.8
Embodied Energy, MJ/kg 43
65
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
230
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
22
Strength to Weight: Bending, points 14 to 17
20
Thermal Diffusivity, mm2/s 75
3.8
Thermal Shock Resistance, points 15 to 20
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
54.4 to 65.4
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
13.5 to 17.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0.010 to 0.1
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0