MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.1133 Steel

C19800 copper belongs to the copper alloys classification, while EN 1.1133 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 12
19 to 24
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 260 to 330
370 to 380
Tensile Strength: Ultimate (UTS), MPa 430 to 550
580 to 620
Tensile Strength: Yield (Proof), MPa 420 to 550
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
49
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 62
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
270 to 550
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
21 to 22
Strength to Weight: Bending, points 14 to 17
20 to 21
Thermal Diffusivity, mm2/s 75
13
Thermal Shock Resistance, points 15 to 20
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
96.9 to 98.8
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0.010 to 0.1
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0