MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.1151 Steel

C19800 copper belongs to the copper alloys classification, while EN 1.1151 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.1151 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 12
21 to 26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 260 to 330
300 to 330
Tensile Strength: Ultimate (UTS), MPa 430 to 550
460 to 520
Tensile Strength: Yield (Proof), MPa 420 to 550
240 to 340

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
50
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 62
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 320
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
98 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
160 to 310
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
16 to 18
Strength to Weight: Bending, points 14 to 17
17 to 18
Thermal Diffusivity, mm2/s 75
13
Thermal Shock Resistance, points 15 to 20
15 to 16

Alloy Composition

Carbon (C), % 0
0.17 to 0.24
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
97.7 to 99.43
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0.010 to 0.1
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0