MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.4615 Stainless Steel

C19800 copper belongs to the copper alloys classification, while EN 1.4615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 12
50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 260 to 330
360
Tensile Strength: Ultimate (UTS), MPa 430 to 550
500
Tensile Strength: Yield (Proof), MPa 420 to 550
200

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
840
Melting Completion (Liquidus), °C 1070
1400
Melting Onset (Solidus), °C 1050
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 43
40
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
200
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
99
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
18
Strength to Weight: Bending, points 14 to 17
18
Thermal Diffusivity, mm2/s 75
4.1
Thermal Shock Resistance, points 15 to 20
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 95.7 to 99.47
2.0 to 4.0
Iron (Fe), % 0.020 to 0.5
63.1 to 72.5
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
4.5 to 6.0
Nitrogen (N), % 0
0.020 to 0.060
Phosphorus (P), % 0.010 to 0.1
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0