MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.4872 Stainless Steel

C19800 copper belongs to the copper alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 12
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Shear Strength, MPa 260 to 330
620
Tensile Strength: Ultimate (UTS), MPa 430 to 550
950
Tensile Strength: Yield (Proof), MPa 420 to 550
560

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1070
1390
Melting Onset (Solidus), °C 1050
1340
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
17
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
230
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
780
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 14 to 17
35
Strength to Weight: Bending, points 14 to 17
28
Thermal Diffusivity, mm2/s 75
3.9
Thermal Shock Resistance, points 15 to 20
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
54.2 to 61.6
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0.010 to 0.1
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0