MakeItFrom.com
Menu (ESC)

C19800 Copper vs. CC760S Brass

Both C19800 copper and CC760S brass are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is CC760S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.0 to 12
22
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 430 to 550
180
Tensile Strength: Yield (Proof), MPa 420 to 550
80

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1070
1000
Melting Onset (Solidus), °C 1050
940
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
150
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
38
Electrical Conductivity: Equal Weight (Specific), % IACS 62
40

Otherwise Unclassified Properties

Base Metal Price, % relative 30
28
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 43
43
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
33
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
29
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 14 to 17
5.8
Strength to Weight: Bending, points 14 to 17
8.2
Thermal Diffusivity, mm2/s 75
45
Thermal Shock Resistance, points 15 to 20
6.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Arsenic (As), % 0
0.050 to 0.15
Copper (Cu), % 95.7 to 99.47
83 to 88
Iron (Fe), % 0.020 to 0.5
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.1
Phosphorus (P), % 0.010 to 0.1
0
Silicon (Si), % 0
0 to 0.020
Tin (Sn), % 0.1 to 1.0
0 to 0.3
Zinc (Zn), % 0.3 to 1.5
10.7 to 17
Residuals, % 0 to 0.2
0