MakeItFrom.com
Menu (ESC)

C19800 Copper vs. Nickel 333

C19800 copper belongs to the copper alloys classification, while nickel 333 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 9.0 to 12
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 260 to 330
420
Tensile Strength: Ultimate (UTS), MPa 430 to 550
630
Tensile Strength: Yield (Proof), MPa 420 to 550
270

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 62
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.8
8.5
Embodied Energy, MJ/kg 43
120
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
170
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 14 to 17
21
Strength to Weight: Bending, points 14 to 17
19
Thermal Diffusivity, mm2/s 75
2.9
Thermal Shock Resistance, points 15 to 20
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
9.3 to 24.5
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0.010 to 0.1
0 to 0.030
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0