MakeItFrom.com
Menu (ESC)

C19800 Copper vs. S13800 Stainless Steel

C19800 copper belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 12
11 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 260 to 330
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 430 to 550
980 to 1730
Tensile Strength: Yield (Proof), MPa 420 to 550
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
810
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 43
46
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
1090 to 5490
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
35 to 61
Strength to Weight: Bending, points 14 to 17
28 to 41
Thermal Diffusivity, mm2/s 75
4.3
Thermal Shock Resistance, points 15 to 20
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
73.6 to 77.3
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0.010 to 0.1
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0