MakeItFrom.com
Menu (ESC)

C19800 Copper vs. S41041 Stainless Steel

C19800 copper belongs to the copper alloys classification, while S41041 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 12
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 260 to 330
560
Tensile Strength: Ultimate (UTS), MPa 430 to 550
910
Tensile Strength: Yield (Proof), MPa 420 to 550
580

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
29
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 62
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
8.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 43
31
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
140
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
860
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
32
Strength to Weight: Bending, points 14 to 17
27
Thermal Diffusivity, mm2/s 75
7.8
Thermal Shock Resistance, points 15 to 20
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0.13 to 0.18
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
84.5 to 87.8
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0.010 to 0.1
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0