MakeItFrom.com
Menu (ESC)

C21000 Brass vs. EN 1.4662 Stainless Steel

C21000 brass belongs to the copper alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C21000 brass and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 50
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Shear Strength, MPa 180 to 280
520 to 540
Tensile Strength: Ultimate (UTS), MPa 240 to 450
810 to 830
Tensile Strength: Yield (Proof), MPa 69 to 440
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
1090
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 57
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
210
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 830
840 to 940
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4 to 14
29 to 30
Strength to Weight: Bending, points 9.6 to 15
25
Thermal Diffusivity, mm2/s 69
3.9
Thermal Shock Resistance, points 8.1 to 15
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 94 to 96
0.1 to 0.8
Iron (Fe), % 0 to 0.050
62.6 to 70.2
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 3.7 to 6.0
0
Residuals, % 0 to 0.2
0