MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. N07752 Nickel

C22000 bronze belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.9 to 45
22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 200 to 300
710
Tensile Strength: Ultimate (UTS), MPa 260 to 520
1120
Tensile Strength: Yield (Proof), MPa 69 to 500
740

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 1040
1380
Melting Onset (Solidus), °C 1020
1330
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 190
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 45
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
220
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
1450
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.1 to 17
37
Strength to Weight: Bending, points 10 to 17
29
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 8.8 to 18
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 89 to 91
0 to 0.5
Iron (Fe), % 0 to 0.050
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 8.7 to 11
0 to 0.050
Residuals, % 0 to 0.2
0