MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. S21904 Stainless Steel

C22000 bronze belongs to the copper alloys classification, while S21904 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is S21904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.9 to 45
17 to 51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 200 to 300
510 to 620
Tensile Strength: Ultimate (UTS), MPa 260 to 520
700 to 1000
Tensile Strength: Yield (Proof), MPa 69 to 500
390 to 910

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1040
1400
Melting Onset (Solidus), °C 1020
1350
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 190
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
160 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
380 to 2070
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 17
25 to 36
Strength to Weight: Bending, points 10 to 17
23 to 29
Thermal Diffusivity, mm2/s 56
3.8
Thermal Shock Resistance, points 8.8 to 18
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 21.5
Copper (Cu), % 89 to 91
0
Iron (Fe), % 0 to 0.050
59.5 to 67.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 8.7 to 11
0
Residuals, % 0 to 0.2
0