MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. S32950 Stainless Steel

C22000 bronze belongs to the copper alloys classification, while S32950 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is S32950 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.9 to 45
17
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
80
Shear Strength, MPa 200 to 300
480
Tensile Strength: Ultimate (UTS), MPa 260 to 520
780
Tensile Strength: Yield (Proof), MPa 69 to 500
550

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1020
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 190
16
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
17
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
730
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 17
28
Strength to Weight: Bending, points 10 to 17
24
Thermal Diffusivity, mm2/s 56
4.3
Thermal Shock Resistance, points 8.8 to 18
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 89 to 91
0
Iron (Fe), % 0 to 0.050
60.3 to 69.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 0
3.5 to 5.2
Nitrogen (N), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 8.7 to 11
0
Residuals, % 0 to 0.2
0