MakeItFrom.com
Menu (ESC)

C22000 Bronze vs. S42300 Stainless Steel

C22000 bronze belongs to the copper alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C22000 bronze and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.9 to 45
9.1
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 200 to 300
650
Tensile Strength: Ultimate (UTS), MPa 260 to 520
1100
Tensile Strength: Yield (Proof), MPa 69 to 500
850

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
750
Melting Completion (Liquidus), °C 1040
1470
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 45
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 230
93
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 1110
1840
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1 to 17
39
Strength to Weight: Bending, points 10 to 17
30
Thermal Diffusivity, mm2/s 56
6.8
Thermal Shock Resistance, points 8.8 to 18
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Copper (Cu), % 89 to 91
0
Iron (Fe), % 0 to 0.050
82 to 85.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 8.7 to 11
0
Residuals, % 0 to 0.2
0