MakeItFrom.com
Menu (ESC)

C22600 Bronze vs. ACI-ASTM CA40F Steel

C22600 bronze belongs to the copper alloys classification, while ACI-ASTM CA40F steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C22600 bronze and the bottom bar is ACI-ASTM CA40F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 33
13
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 330 to 570
770
Tensile Strength: Yield (Proof), MPa 270 to 490
550

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1000
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 170
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 42
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.5
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 42
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 100
94
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1070
790
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
28
Strength to Weight: Bending, points 12 to 18
24
Thermal Diffusivity, mm2/s 52
7.2
Thermal Shock Resistance, points 11 to 19
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
81.6 to 88.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0.2 to 0.4
Zinc (Zn), % 10.7 to 14
0
Residuals, % 0 to 0.2
0