MakeItFrom.com
Menu (ESC)

C22600 Bronze vs. CC752S Brass

Both C22600 bronze and CC752S brass are copper alloys. They have 75% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C22600 bronze and the bottom bar is CC752S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 2.5 to 33
8.4
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 330 to 570
350
Tensile Strength: Yield (Proof), MPa 270 to 490
190

Thermal Properties

Latent Heat of Fusion, J/g 200
170
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 1040
840
Melting Onset (Solidus), °C 1000
800
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 170
110
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
25
Electrical Conductivity: Equal Weight (Specific), % IACS 42
28

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 100
25
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1070
180
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 18
12
Strength to Weight: Bending, points 12 to 18
13
Thermal Diffusivity, mm2/s 52
35
Thermal Shock Resistance, points 11 to 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.3 to 0.7
Antimony (Sb), % 0
0 to 0.14
Arsenic (As), % 0
0.040 to 0.14
Copper (Cu), % 86 to 89
61.5 to 64.5
Iron (Fe), % 0 to 0.050
0 to 0.3
Lead (Pb), % 0 to 0.050
1.5 to 2.2
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.020
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 10.7 to 14
31.5 to 36.7
Residuals, % 0 to 0.2
0