MakeItFrom.com
Menu (ESC)

C22600 Bronze vs. C84200 Brass

Both C22600 bronze and C84200 brass are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C22600 bronze and the bottom bar is C84200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.5 to 33
15
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 330 to 570
250
Tensile Strength: Yield (Proof), MPa 270 to 490
120

Thermal Properties

Latent Heat of Fusion, J/g 200
180
Maximum Temperature: Mechanical, °C 170
150
Melting Completion (Liquidus), °C 1040
990
Melting Onset (Solidus), °C 1000
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 170
72
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
16
Electrical Conductivity: Equal Weight (Specific), % IACS 42
17

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 310
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 100
31
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1070
72
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11 to 18
8.2
Strength to Weight: Bending, points 12 to 18
10
Thermal Diffusivity, mm2/s 52
23
Thermal Shock Resistance, points 11 to 19
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 86 to 89
78 to 82
Iron (Fe), % 0 to 0.050
0 to 0.4
Lead (Pb), % 0 to 0.050
2.0 to 3.0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 10.7 to 14
10 to 16
Residuals, % 0 to 0.2
0 to 0.7