MakeItFrom.com
Menu (ESC)

C22600 Bronze vs. S13800 Stainless Steel

C22600 bronze belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C22600 bronze and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 33
11 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 320
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 330 to 570
980 to 1730
Tensile Strength: Yield (Proof), MPa 270 to 490
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1000
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 42
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
15
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 100
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1070
1090 to 5490
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
35 to 61
Strength to Weight: Bending, points 12 to 18
28 to 41
Thermal Diffusivity, mm2/s 52
4.3
Thermal Shock Resistance, points 11 to 19
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
73.6 to 77.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 10.7 to 14
0
Residuals, % 0 to 0.2
0