MakeItFrom.com
Menu (ESC)

C23000 Brass vs. AISI 405 Stainless Steel

C23000 brass belongs to the copper alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.9 to 47
22
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 48 to 87
76
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 340
300
Tensile Strength: Ultimate (UTS), MPa 280 to 590
470
Tensile Strength: Yield (Proof), MPa 83 to 480
200

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 1030
1530
Melting Onset (Solidus), °C 990
1480
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 160
30
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 39
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.0
Calomel Potential, mV -350
-210
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 43
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
84
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.9 to 19
17
Strength to Weight: Bending, points 11 to 18
17
Thermal Diffusivity, mm2/s 48
8.1
Thermal Shock Resistance, points 9.4 to 20
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.3
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
11.5 to 14.5
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.050
82.5 to 88.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.7 to 16
0
Residuals, % 0 to 0.2
0