MakeItFrom.com
Menu (ESC)

C23000 Brass vs. EN 1.4567 Stainless Steel

C23000 brass belongs to the copper alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.9 to 47
22 to 51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 340
390 to 490
Tensile Strength: Ultimate (UTS), MPa 280 to 590
550 to 780
Tensile Strength: Yield (Proof), MPa 83 to 480
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 1030
1410
Melting Onset (Solidus), °C 990
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 39
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
16
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 43
43
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
100 to 400
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.9 to 19
19 to 27
Strength to Weight: Bending, points 11 to 18
19 to 24
Thermal Diffusivity, mm2/s 48
3.0
Thermal Shock Resistance, points 9.4 to 20
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 84 to 86
3.0 to 4.0
Iron (Fe), % 0 to 0.050
63.3 to 71.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 13.7 to 16
0
Residuals, % 0 to 0.2
0