MakeItFrom.com
Menu (ESC)

C23000 Brass vs. C92700 Bronze

Both C23000 brass and C92700 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.9 to 47
9.1
Poisson's Ratio 0.33
0.34
Rockwell B Hardness 48 to 87
77
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 280 to 590
290
Tensile Strength: Yield (Proof), MPa 83 to 480
150

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 1030
980
Melting Onset (Solidus), °C 990
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 160
47
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
11
Electrical Conductivity: Equal Weight (Specific), % IACS 39
11

Otherwise Unclassified Properties

Base Metal Price, % relative 28
35
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 43
58
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
22
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
110
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 8.9 to 19
9.1
Strength to Weight: Bending, points 11 to 18
11
Thermal Diffusivity, mm2/s 48
15
Thermal Shock Resistance, points 9.4 to 20
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 84 to 86
86 to 89
Iron (Fe), % 0 to 0.050
0 to 0.2
Lead (Pb), % 0 to 0.050
1.0 to 2.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 13.7 to 16
0 to 0.7
Residuals, % 0 to 0.2
0 to 0.7