MakeItFrom.com
Menu (ESC)

C23400 Brass vs. C81500 Copper

Both C23400 brass and C81500 copper are copper alloys. They have 83% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C23400 brass and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 370 to 640
350

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 970
1090
Melting Onset (Solidus), °C 930
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 19
17

Otherwise Unclassified Properties

Base Metal Price, % relative 27
31
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 320
310

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 12 to 21
11
Strength to Weight: Bending, points 13 to 19
12
Thermal Diffusivity, mm2/s 36
91
Thermal Shock Resistance, points 12 to 22
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 81 to 84
97.4 to 99.6
Iron (Fe), % 0 to 0.050
0 to 0.1
Lead (Pb), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 15.7 to 19
0 to 0.1
Residuals, % 0 to 0.2
0 to 0.5