MakeItFrom.com
Menu (ESC)

C26000 Brass vs. EN 1.4477 Stainless Steel

C26000 brass belongs to the copper alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.5 to 66
22 to 23
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
81
Shear Strength, MPa 230 to 390
550 to 580
Tensile Strength: Ultimate (UTS), MPa 320 to 680
880 to 930
Tensile Strength: Yield (Proof), MPa 110 to 570
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 950
1430
Melting Onset (Solidus), °C 920
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
20
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
940 to 1290
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
31 to 33
Strength to Weight: Bending, points 13 to 21
26 to 27
Thermal Diffusivity, mm2/s 38
3.5
Thermal Shock Resistance, points 11 to 23
23 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 68.5 to 71.5
0 to 0.8
Iron (Fe), % 0 to 0.050
56.6 to 63.6
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0