MakeItFrom.com
Menu (ESC)

C26000 Brass vs. S31655 Stainless Steel

C26000 brass belongs to the copper alloys classification, while S31655 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is S31655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 66
39
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 53 to 93
88
Shear Modulus, GPa 41
78
Shear Strength, MPa 230 to 390
490
Tensile Strength: Ultimate (UTS), MPa 320 to 680
710
Tensile Strength: Yield (Proof), MPa 110 to 570
350

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
1010
Melting Completion (Liquidus), °C 950
1430
Melting Onset (Solidus), °C 920
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
17
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
230
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
310
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
25
Strength to Weight: Bending, points 13 to 21
23
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 11 to 23
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 68.5 to 71.5
0 to 1.0
Iron (Fe), % 0 to 0.050
63.2 to 71.9
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.5 to 1.5
Nickel (Ni), % 0
8.0 to 9.5
Nitrogen (N), % 0
0.14 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0