MakeItFrom.com
Menu (ESC)

C26200 Brass vs. 5457 Aluminum

C26200 brass belongs to the copper alloys classification, while 5457 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C26200 brass and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 3.0 to 180
6.0 to 22
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 230 to 390
85 to 130
Tensile Strength: Ultimate (UTS), MPa 330 to 770
130 to 210
Tensile Strength: Yield (Proof), MPa 110 to 490
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 140
180
Melting Completion (Liquidus), °C 950
660
Melting Onset (Solidus), °C 920
630
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
180
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
46
Electrical Conductivity: Equal Weight (Specific), % IACS 31
150

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.4
Embodied Energy, MJ/kg 45
160
Embodied Water, L/kg 320
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
18 to 250
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 11 to 26
13 to 21
Strength to Weight: Bending, points 13 to 23
21 to 28
Thermal Diffusivity, mm2/s 38
72
Thermal Shock Resistance, points 11 to 26
5.7 to 9.0

Alloy Composition

Aluminum (Al), % 0
97.8 to 99.05
Copper (Cu), % 67 to 70
0 to 0.2
Iron (Fe), % 0 to 0.050
0 to 0.1
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0.15 to 0.45
Silicon (Si), % 0
0 to 0.080
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 29.6 to 33
0 to 0.050
Residuals, % 0
0 to 0.1