MakeItFrom.com
Menu (ESC)

C26200 Brass vs. EN 1.6982 Stainless Steel

C26200 brass belongs to the copper alloys classification, while EN 1.6982 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is EN 1.6982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 180
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 330 to 770
800
Tensile Strength: Yield (Proof), MPa 110 to 490
570

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
770
Melting Completion (Liquidus), °C 950
1440
Melting Onset (Solidus), °C 920
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
820
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 26
28
Strength to Weight: Bending, points 13 to 23
25
Thermal Diffusivity, mm2/s 38
6.6
Thermal Shock Resistance, points 11 to 26
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 67 to 70
0
Iron (Fe), % 0 to 0.050
78.7 to 84.5
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
3.5 to 5.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0