MakeItFrom.com
Menu (ESC)

C26200 Brass vs. EN 1.7366 Steel

C26200 brass belongs to the copper alloys classification, while EN 1.7366 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is EN 1.7366 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 180
17 to 19
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
74
Shear Strength, MPa 230 to 390
290 to 440
Tensile Strength: Ultimate (UTS), MPa 330 to 770
460 to 710
Tensile Strength: Yield (Proof), MPa 110 to 490
230 to 480

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 140
510
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 31
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
4.3
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 320
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
74 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
140 to 600
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 26
16 to 25
Strength to Weight: Bending, points 13 to 23
17 to 23
Thermal Diffusivity, mm2/s 38
11
Thermal Shock Resistance, points 11 to 26
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 67 to 70
0
Iron (Fe), % 0 to 0.050
91.9 to 95.3
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0