MakeItFrom.com
Menu (ESC)

C26200 Brass vs. Grade 28 Titanium

C26200 brass belongs to the copper alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.0 to 180
11 to 17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 41
40
Shear Strength, MPa 230 to 390
420 to 590
Tensile Strength: Ultimate (UTS), MPa 330 to 770
690 to 980
Tensile Strength: Yield (Proof), MPa 110 to 490
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 140
330
Melting Completion (Liquidus), °C 950
1640
Melting Onset (Solidus), °C 920
1590
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 120
8.3
Thermal Expansion, µm/m-K 20
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
36
Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 2.7
37
Embodied Energy, MJ/kg 45
600
Embodied Water, L/kg 320
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
1370 to 3100
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11 to 26
43 to 61
Strength to Weight: Bending, points 13 to 23
39 to 49
Thermal Diffusivity, mm2/s 38
3.4
Thermal Shock Resistance, points 11 to 26
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 67 to 70
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.070
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.080 to 0.14
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0
0 to 0.4