MakeItFrom.com
Menu (ESC)

C26200 Brass vs. SAE-AISI 1020 Steel

C26200 brass belongs to the copper alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 180
17 to 28
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 230 to 390
280
Tensile Strength: Ultimate (UTS), MPa 330 to 770
430 to 460
Tensile Strength: Yield (Proof), MPa 110 to 490
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
11
Electrical Conductivity: Equal Weight (Specific), % IACS 31
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 320
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
150 to 380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 26
15 to 16
Strength to Weight: Bending, points 13 to 23
16 to 17
Thermal Diffusivity, mm2/s 38
14
Thermal Shock Resistance, points 11 to 26
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.18 to 0.23
Copper (Cu), % 67 to 70
0
Iron (Fe), % 0 to 0.050
99.08 to 99.52
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0