MakeItFrom.com
Menu (ESC)

C26200 Brass vs. N07750 Nickel

C26200 brass belongs to the copper alloys classification, while N07750 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 180
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 230 to 390
770
Tensile Strength: Ultimate (UTS), MPa 330 to 770
1200
Tensile Strength: Yield (Proof), MPa 110 to 490
820

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 140
960
Melting Completion (Liquidus), °C 950
1430
Melting Onset (Solidus), °C 920
1400
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
60
Density, g/cm3 8.2
8.4
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
270
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
1770
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 26
40
Strength to Weight: Bending, points 13 to 23
30
Thermal Diffusivity, mm2/s 38
3.3
Thermal Shock Resistance, points 11 to 26
36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 67 to 70
0 to 0.5
Iron (Fe), % 0 to 0.050
5.0 to 9.0
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0