MakeItFrom.com
Menu (ESC)

C26200 Brass vs. N08801 Stainless Steel

C26200 brass belongs to the copper alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 180
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 230 to 390
570
Tensile Strength: Ultimate (UTS), MPa 330 to 770
860
Tensile Strength: Yield (Proof), MPa 110 to 490
190

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
1090
Melting Completion (Liquidus), °C 950
1390
Melting Onset (Solidus), °C 920
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 25
30
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.5
Embodied Energy, MJ/kg 45
79
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
220
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
92
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 26
30
Strength to Weight: Bending, points 13 to 23
25
Thermal Diffusivity, mm2/s 38
3.3
Thermal Shock Resistance, points 11 to 26
20

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 67 to 70
0 to 0.5
Iron (Fe), % 0 to 0.050
39.5 to 50.3
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 34
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.75 to 1.5
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0