MakeItFrom.com
Menu (ESC)

C26800 Brass vs. 1060 Aluminum

C26800 brass belongs to the copper alloys classification, while 1060 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C26800 brass and the bottom bar is 1060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 310 to 650
67 to 130

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 930
660
Melting Onset (Solidus), °C 900
650
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
230
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
62
Electrical Conductivity: Equal Weight (Specific), % IACS 30
210

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Calomel Potential, mV -360
-750
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
160
Embodied Water, L/kg 320
1200

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 11 to 22
6.9 to 13
Strength to Weight: Bending, points 13 to 21
14 to 21
Thermal Diffusivity, mm2/s 37
96
Thermal Shock Resistance, points 10 to 22
3.0 to 5.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
99.6 to 100
Copper (Cu), % 64 to 68.5
0 to 0.050
Iron (Fe), % 0 to 0.050
0 to 0.35
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 31 to 36
0 to 0.050
Residuals, % 0 to 0.3
0