MakeItFrom.com
Menu (ESC)

C26800 Brass vs. 771.0 Aluminum

C26800 brass belongs to the copper alloys classification, while 771.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C26800 brass and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 310 to 650
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 180
380
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 930
630
Melting Onset (Solidus), °C 900
620
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 120
140 to 150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
27
Electrical Conductivity: Equal Weight (Specific), % IACS 30
82

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1130

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 11 to 22
23 to 35
Strength to Weight: Bending, points 13 to 21
29 to 39
Thermal Diffusivity, mm2/s 37
54 to 58
Thermal Shock Resistance, points 10 to 22
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
90.5 to 92.5
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 64 to 68.5
0 to 0.1
Iron (Fe), % 0 to 0.050
0 to 0.15
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0
0.8 to 1.0
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 31 to 36
6.5 to 7.5
Residuals, % 0 to 0.3
0 to 0.15