MakeItFrom.com
Menu (ESC)

C26800 Brass vs. C69700 Brass

Both C26800 brass and C69700 brass are copper alloys. They have 84% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C26800 brass and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 310 to 650
470

Thermal Properties

Latent Heat of Fusion, J/g 180
240
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 930
930
Melting Onset (Solidus), °C 900
880
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 120
43
Thermal Expansion, µm/m-K 20
19

Otherwise Unclassified Properties

Base Metal Price, % relative 24
26
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 320
310

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 22
16
Strength to Weight: Bending, points 13 to 21
16
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 10 to 22
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 64 to 68.5
75 to 80
Iron (Fe), % 0 to 0.050
0 to 0.2
Lead (Pb), % 0 to 0.15
0.5 to 1.5
Manganese (Mn), % 0
0 to 0.4
Silicon (Si), % 0
2.5 to 3.5
Zinc (Zn), % 31 to 36
13.9 to 22
Residuals, % 0 to 0.3
0 to 0.5