MakeItFrom.com
Menu (ESC)

C27200 Brass vs. ASTM A372 Grade M Steel

C27200 brass belongs to the copper alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10 to 50
18 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 230 to 320
510 to 570
Tensile Strength: Ultimate (UTS), MPa 370 to 590
810 to 910
Tensile Strength: Yield (Proof), MPa 150 to 410
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
450
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 24
5.0
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 45
27
Embodied Water, L/kg 320
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
1140 to 1580
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 20
29 to 32
Strength to Weight: Bending, points 14 to 19
24 to 27
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 12 to 20
24 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
92.5 to 95.1
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0

Comparable Variants