MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. EN 1.4923 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 10 to 45
12 to 21
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 230 to 330
540 to 590
Tensile Strength: Ultimate (UTS), MPa 330 to 610
870 to 980
Tensile Strength: Yield (Proof), MPa 150 to 370
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
24
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 46
41
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
570 to 1580
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
31 to 35
Strength to Weight: Bending, points 13 to 20
26 to 28
Thermal Diffusivity, mm2/s 40
6.5
Thermal Shock Resistance, points 11 to 20
30 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
83.5 to 87.1
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0

Comparable Variants