MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. EN 1.7383 Steel

C28000 Muntz Metal belongs to the copper alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 10 to 45
20 to 23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 230 to 330
350 to 380
Tensile Strength: Ultimate (UTS), MPa 330 to 610
560 to 610
Tensile Strength: Yield (Proof), MPa 150 to 370
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
460
Melting Completion (Liquidus), °C 900
1470
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.9
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 46
23
Embodied Water, L/kg 320
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
240 to 420
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 11 to 21
20 to 22
Strength to Weight: Bending, points 13 to 20
19 to 20
Thermal Diffusivity, mm2/s 40
11
Thermal Shock Resistance, points 11 to 20
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 59 to 63
0 to 0.3
Iron (Fe), % 0 to 0.070
94.3 to 96.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0