MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. Grade C-3 Titanium

C28000 Muntz Metal belongs to the copper alloys classification, while grade C-3 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is grade C-3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 10 to 45
13
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 330 to 610
500
Tensile Strength: Yield (Proof), MPa 150 to 370
430

Thermal Properties

Latent Heat of Fusion, J/g 170
420
Maximum Temperature: Mechanical, °C 120
320
Melting Completion (Liquidus), °C 900
1660
Melting Onset (Solidus), °C 900
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 21
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 31
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
37
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 2.7
31
Embodied Energy, MJ/kg 46
510
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
65
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
880
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 11 to 21
31
Strength to Weight: Bending, points 13 to 20
31
Thermal Diffusivity, mm2/s 40
8.5
Thermal Shock Resistance, points 11 to 20
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 59 to 63
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.070
0 to 0.25
Lead (Pb), % 0 to 0.3
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Titanium (Ti), % 0
98.8 to 100
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0 to 0.4