MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. C90200 Bronze

Both C28000 Muntz Metal and C90200 bronze are copper alloys. They have 62% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 10 to 45
30
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 330 to 610
260
Tensile Strength: Yield (Proof), MPa 150 to 370
110

Thermal Properties

Latent Heat of Fusion, J/g 170
200
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
1050
Melting Onset (Solidus), °C 900
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
62
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
13
Electrical Conductivity: Equal Weight (Specific), % IACS 31
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
34
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 46
53
Embodied Water, L/kg 320
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
63
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
55
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 11 to 21
8.3
Strength to Weight: Bending, points 13 to 20
10
Thermal Diffusivity, mm2/s 40
19
Thermal Shock Resistance, points 11 to 20
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 59 to 63
91 to 94
Iron (Fe), % 0 to 0.070
0 to 0.2
Lead (Pb), % 0 to 0.3
0 to 0.3
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 36.3 to 41
0 to 0.5
Residuals, % 0 to 0.3
0 to 0.6