MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. N08120 Nickel

C28000 Muntz Metal belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 10 to 45
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 230 to 330
470
Tensile Strength: Ultimate (UTS), MPa 330 to 610
700
Tensile Strength: Yield (Proof), MPa 150 to 370
310

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1000
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
45
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 46
100
Embodied Water, L/kg 320
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 11 to 21
24
Strength to Weight: Bending, points 13 to 20
21
Thermal Diffusivity, mm2/s 40
3.0
Thermal Shock Resistance, points 11 to 20
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 59 to 63
0 to 0.5
Iron (Fe), % 0 to 0.070
21 to 41.4
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0