MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. AISI 301 Stainless Steel

C28500 Muntz Metal belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20
7.4 to 46
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 320
410 to 860
Tensile Strength: Ultimate (UTS), MPa 520
590 to 1460
Tensile Strength: Yield (Proof), MPa 380
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 110
840
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 22
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 46
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 700
130 to 2970
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 18
21 to 52
Strength to Weight: Bending, points 18
20 to 37
Thermal Diffusivity, mm2/s 33
4.2
Thermal Shock Resistance, points 17
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 57 to 59
0
Iron (Fe), % 0 to 0.35
70.7 to 78
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 39.5 to 43
0
Residuals, % 0 to 0.9
0