MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. Grade 9 Titanium

C28500 Muntz Metal belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 20
11 to 17
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 40
40
Shear Strength, MPa 320
430 to 580
Tensile Strength: Ultimate (UTS), MPa 520
700 to 960
Tensile Strength: Yield (Proof), MPa 380
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 110
330
Melting Completion (Liquidus), °C 900
1640
Melting Onset (Solidus), °C 890
1590
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 100
8.1
Thermal Expansion, µm/m-K 21
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 22
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 2.7
36
Embodied Energy, MJ/kg 46
580
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 700
1380 to 3220
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 18
43 to 60
Strength to Weight: Bending, points 18
39 to 48
Thermal Diffusivity, mm2/s 33
3.3
Thermal Shock Resistance, points 17
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 57 to 59
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.25
Lead (Pb), % 0 to 0.25
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 39.5 to 43
0
Residuals, % 0
0 to 0.4